International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS PHYSICAL SCIENCE

PAPER 2

0652/2

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12.

FOR EXAMI	NER'S USE
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

1 Fig. 1.1 shows the design of a periscope.

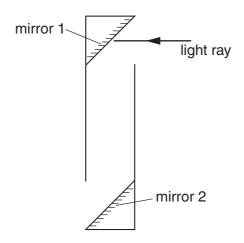


Fig. 1.1

(a) Complete the path of the light ray after it strikes mirror 1. [2]
(b) Draw in the normal to the surface of mirror 1. Mark the angle of incidence and label it i. [1]
(c) State the relationship between the angle of incidence and the angle of reflection. [1]
(d) Suggest a possible use for the periscope. [1]

(a) A student investigates the rate of reaction between limestone (calcium carbona 2 dilute hydrochloric acid.

$$\mathsf{CaCO}_3(\mathsf{s}) + 2\mathsf{HC}l(\mathsf{aq}) \to \mathsf{CaC}l_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(l) + \mathsf{CO}_2(\mathsf{g})$$

		the state of the s	
		3	For Examiner's
(a)		tudent investigates the rate of reaction between limestone (calcium carbonate hydrochloric acid. ${\sf CaCO_3(s)+2HC}l({\sf aq}) \to {\sf CaC}l_2({\sf aq}) + {\sf H_2O}(l) + {\sf CO_2(g)}$ scribe the effect on the rate of reaction of	Use
		$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$	Tage
	Des	scribe the effect on the rate of reaction of	COM
	(i)	decreasing the concentration of the acid	
		[1]	1
	(ii)	decreasing the temperature of the acid	
		[1]	
	(iii)	decreasing the size of the pieces of limestone.	
		[1]	
(b)	Des	scribe a chemical test for carbon dioxide.	
	test		

Fig. 3.1 shows a speed-time graph of a sprinter in a 100 m race. He took 12 s to comp 3 race.

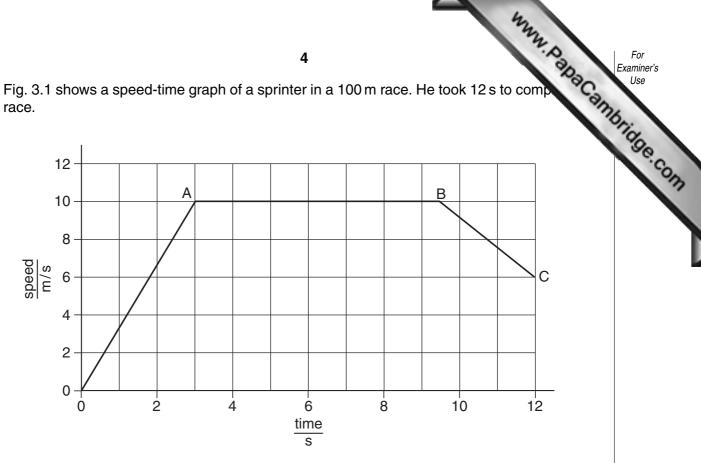


Fig. 3.1

(a)	(i)	Describe the motion of the sprinter during the first three seconds.	
			[2]
	(ii)	Describe the motion of the sprinter during the section AB.	
			[1]
(b)		culate the distance the sprinter covers in the first three seconds.	

(c) State the speed of the sprinter as he finishes the race.

		42
		5 - Tan - Ta
(a)	(i)	Use the Periodic Table on page 12 to find the total number of electrons in one of magnesium, Mg. total number of electrons =
		total number of electrons =[1]
	(ii)	State the number of electrons in the shells around the nucleus of a magnesium atom.
		first shell
		second shell
		third shell[1]
(b)	A p	ece of magnesium ribbon burns when heated in air to form the oxide.
		ece of sodium oxidises spontaneously at room temperature when exposed to air to the oxide.
	A p	ece of copper wire does not burn when heated in air but does form a layer of oxide.
	(i)	Place these three metals in an order of increasing reactivity, the most reactive or the right.
		least reactive most reactive
		[1]
	(ii)	Name a metal in Group I that will oxidise more readily than sodium.
		[1]
((iii)	State and explain why these oxides are classified as basic oxides.
		[2]

5 Fig. 5.1 shows an electrical circuit.

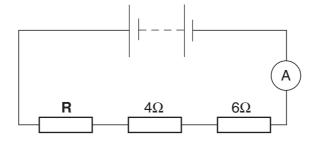


Fig 5.1

The reading on the ammeter is $0.8\,A$, and the potential difference across the resistor labelled ${f R}$ is $4.0\,V$.

- (a) Complete the diagram to show how a voltmeter would be connected to measure the potential difference across resistor **R**. [2]
 - (i) Calculate the value of the resistor R. Show your working.

resistance =

(ii) State the unit in which the resistance is measured.

.....[3]

 $\mbox{(c)}\ \ \, \mbox{Calculate the total resistance in the circuit. Show your working.}$

total resistance = [1]

(d) Calculate the potential difference across the battery in this circuit. Show your working.

potential difference across the battery = V [2]

(a) Sodium chloride is an ionic compound, containing the ions Na^+ and Cl^- .

		the state of the s	
		7	For Examiner's
(a)	Sod	dium chloride is an ionic compound, containing the ions Na $^+$ and C l^- .	and Use
	(i)	Describe the formation of each of these ions in terms of electron transfer between atoms.	For Examiner's Use
		[2]
	(ii)	In terms of forces between these ions, explain why sodium chloride has a hig melting point.	jh
	_	[2]
(b)		scribe a chemical test for the chloride ion in solution.	
	resu	ult[2]

Fig. 7.1 shows an experiment set up to investigate the deflection of β -particles by a matrix β -particles by β -particles 7 field.

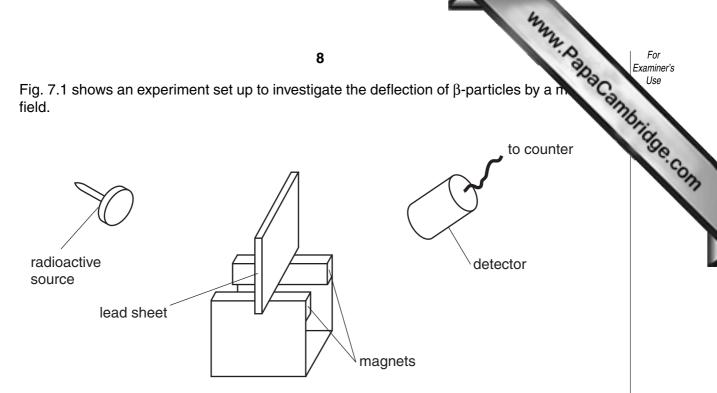


Fig. 7.1

(a)	(i)	Explain the purpose of the lead sheet.
	(ii)	Name a suitable detector.
		en there is no radioactive source present, a few counts are recorded each minute.
	(iii) Stat	State what causes these counts. [3]
(b)		e one precaution that should be taken when using radioactive sources.
(c)		lain why a similar experiment to show the deflection of α -particles must be done in a num.
		[2]

www.papaCambridge.com (d) When demonstrating the deflection of α -particles a very much stronger ma needed than with the β -particles. The deflection is very much less and it is 1opposite direction. What does the small deflection and the need for a stronger magnet suggest about the mass of the α -particles compared with that of β -particles?[1] What does the deflection in the opposite direction tell us about the α -particles compared with β-particles?[2] (e) Explain why γ -radiation can not be deflected however strong a magnetic field is applied.

8	(a)	The formula of a	hydrocarbon	compound	is $C_{20}H_{42}$.
---	-----	------------------	-------------	----------	---------------------

www.PapaCambridge.com (i) Use the Periodic Table on page 12 to calculate the relative molecular mass, $M_{\rm p}$ compound. Show your working.

		$M_{\rm r}$ [2]
	(ii)	Give the formula of the next hydrocarbon in the same homologous series.
		[1]
	(iii)	Name this homologous series.
		[1]
	(iv)	Describe a chemical test to distinguish between alkanes (saturated hydrocarbons) and alkenes (unsaturated hydrocarbons).
		test
		result for alkanes
		result for alkenes[3]
(b)	One	e use of the hydrocarbon, C ₂₀ H ₄₂ , mp 37 °C, is in candles.
	(i)	Candles burn with a yellow sooty flame. Name three chemical products formed when the candle burns.
		1
		2
		3[3]

www.PapaCambridge.com (ii) Explain why there needs to be a pool of molten wax round the wick for the properly.

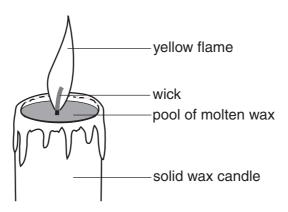


Fig. 8.1

r ₄ .
[1]
Suggest why candles for use in hot countries should be made from hydrocarbons with more than 20 carbon atoms in the molecule.
[9]

	Elements
DATA SHEET	The Periodic Table of the

								Ğ	Group									
_	=											≡	2	>		II/	0	
							T Hydrogen										4 He Helium	
Lithium 4	9 Be Beryllium							1				11 Boron	12 Carbon	14 N itrogen 7	16 Oxygen	19 Fluorine	20 Ne Neon 10	
23 Na Sodium	24 Mg Magnesium											27 A1 Aluminium 13	28 Si Silion 14	31 P Phosphorus 15	32 S Sulphur 16	35.5 C1 Chlorine	40 Ar Argon	
39 K	40 Ca Calcium	Scandium	48 Ti Titanium	51 V Vanadium	52 Chromium	55 Mn Manganese	56 Iron	59 Cobalt	59 Nickel	64 Copper	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium	75 AS Arsenic	79 Selenium 34	80 Br Bromine	84 Krypton	
Rb subidium 3	88 Sr Strontium	89 ×	91 Zr Zirconium 40	93 Nbb ium 141	96 Mo Molybdenum 42		DC Ruthenium 44	103 Rhodium At5	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium 49	20 Tin 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon	12
133 Cs	137 Ba Barium 56	139 La Lanthanum 57 *		181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium	195 P Platinum 78	197 Au Gold	201 Hg Mercury	204 T1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86	
rancium 8	226 Ra Radium 88	227 Ac Actinium 89																
3-71 Lanthanoid series 0-103 Actinoid series	otinoid	d series series	٦	140 Ce Cerium	Pr Praseodymium 59	144 Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	Lutetium	
> ×	в Х	a = relative atomic massX = atomic symbolb = proton (atomic) number	nic mass bol nic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium	BK Berkelium 97	Californium 98	ES Einsteinium 99	Fm Fermium 100	_ =	Nobelium 102	Lr Lawre 103	WW DOL
				The	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).	one mole	of any ga	as is 24 di	m³ at roor	n tempers	ature and	pressure	(r.t.p.).			Tage Con	Canby.	Cambridge.com

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).